ALGEBRA: PROGRESSION MAP FOR FLUENCY, REASONING AND PROBLEM SOLVING

Algebra: Statutory Requirements and Reasoning (from NCETM)

EQUATIONS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically
	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction)				find pairs of numbers that satisfy number sentences involving two unknowns
represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction)					enumerate all possibilities of combinations of two variables
Connected Calculations $\begin{aligned} & 11=3+8 \\ & 12=4+8 \end{aligned}$	Connected Calculations	Connected Calculations	Connected Calculations Put the numbers $7.2,8$, 0.9 in the boxes to make	Connected Calculations The number sentence below represents the angles in	Connected Calculations p and q each stand for whole numbers.

$\begin{aligned} & 13=\square+8 \\ & 14=\square+8 \end{aligned}$ What numbers go in the boxes? Can you continue this sequence of calculations?	Put the numbers 19,15 and 4 in the boxes to make the number sentences correct. $\begin{aligned} & \square=\square-\square \\ & \square=\square+\square \end{aligned}$	Put the numbers $3,12,36$ in the boxes to make the number sentences correct. $\begin{aligned} & \square=\square \times \square \\ & \square=\square \div \square \end{aligned}$	the number sentences correct. $\begin{aligned} & \square=\square \times \square \\ & \square=\square \div \square \end{aligned}$	degrees of an isosceles triangle. $A+B+C=180$ degrees A and B are equal and are multiples of 5 . Give an example of what the 3 angles could be. Write down 3 more examples	$p+q=1000 \text { and } p \text { is } 150$ greater than q. Work out the values of p and q.

FORMULAE						
Year 1	Year 2	Year 3		Year 5	Year 6	
			Perimeter can be expressed algebraically as 2($a+b$) where a and b are the dimensions in the same unit. (Copied from NSG measurement)		use simple formulae	
					recognise when it is possible to use formulae for area and volume of shapes (copied from Measurement)	
			Undoing If the longer length of a rectangle is 13 cm and the perimeter is 36 cm , what is the length of the shorter side? Explain how you got your answer.	Undoing The perimeter of a rectangular garden is between 40 and 50 metres. What could the dimensions of the garden be?	Undoing The diagram below represents two rectangular fields that are next to each other.	
					Field A	$\begin{gathered} \text { Field } \\ \text { B } \\ \hline \end{gathered}$
					Field A is twice field B but their the same and ar	ng as dths are 6 metres.

					If the perimeter of the small field is 23 m what is the perimeter of the entire shape containing both fields? If y stands for a number complete the table below			
							$3 y$	$3 \mathrm{y}+1$
						25		
								28
								value of y er in the

SEQUENCES					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening (copied from Measurement)	compare and sequence intervals of time (copied from Measurement)				generate and describe linear number sequences
	order and arrange combinations of mathematical objects in patterns (copied from Geometry: position and direction)				
	True or false? Explain The largest three digit number that can be made from the digits 2,4 and 6 is 264. Is this true or false? Explain your thinking.				Generalising Write a formula for the $10^{\text {th }}$ $100^{\text {th }}$ and nth terms of the sequences below. $\begin{aligned} & 4,8,12,16 \ldots \\ & 0.4,0.8,1.2,1.6, \ldots \end{aligned}$

Algebra: Key Performance Indicators

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				Use simple formulae	
Generate and describe					
linear number sequences					
Express missing number					
problems algebraically					

Algebra: Cross-curricular links

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6

Algebra: Vocabulary

Year 1	Year 2	Year 3	Year 4	Year 5	
				Year 6 formula formulae equation unknown variable	

