MULTIPLICATION AND DIVISION: PROGRESSION MAP FOR FLUENCY, REASONING AND PROBLEM SOLVING

Multiplication and Division: Statutory Requirements and Reasoning (from NCETM)

MULTIPLICATION \& DIVISION FACTS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value)	count in multiples of 6, 7,9,25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
	Missing numbers $10=5 x$ What number could be written in the box? Making links I have 30p in my pocket in 5 p coins. How many coins do I have?	Missing numbers $24=$ \square x Which pairs of numbers could be written in the boxes? Making links Cards come in packs of 4 . How many packs do I need to buy to get 32 cards?	Missing numbers $72=$ Which pairs of numbers could be written in the boxes? Making links Eggs are bought in boxes of 12. I need 140 eggs; how many boxes will I need to buy?	Missing numbers $6 \times 0.9=\square \times 0.03$ $6 \times 0.04=0.008 x$ Which numbers could be written in the boxes? Making links Apples weigh about 170 g each. How many apples would you expect to get in a 2 kg bag?	Missing numbers $2.4 \div 0.3=\quad \square \times 1.25$ Which number could be written in the box? Making links

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{MENTAL CALCULATION} \\
\hline Year 1 \& \multicolumn{3}{|c|}{Year 2} \& Year 3 \& Year 4 \& Year 5 \& Year 6 \\
\hline \& \& \& \& write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Written Methods) \& use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers \& multiply and divide numbers mentally drawing upon known facts \& perform mental calculations, including with mixed operations and large numbers \\
\hline \& \& \& \& \begin{tabular}{l}
Use a fact
\[
20 \times 3=60 .
\] \\
Use this fact to work out
\[
\begin{array}{ll}
21 \times 3= \& 22 \times 3= \\
23 \times 3= \& 24 \times 3=
\end{array}
\]
\end{tabular} \& \begin{tabular}{l}
Use a fact
\[
63 \div 9=7
\] \\
Use this fact to work out
\[
\begin{aligned}
\& 126 \div 9= \\
\& 252 \div 7=
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
Use a fact
\[
3 \times 75=225
\] \\
Use this fact to work out
\[
\begin{aligned}
\& 450 \div 6= \\
\& 225 \div 0.6=
\end{aligned}
\] \\
To multiply by 25 you multiply by 100 and then divide by 4. Use this strategy to solve
\[
\begin{array}{ll}
48 \times 25 \\
4.6 \times 25
\end{array} \quad 78 \times 25
\]
\end{tabular} \& \begin{tabular}{l}
Use a fact
\[
12 \times 1.1=13.2
\] \\
Use this fact to work out
\[
15.4 \div 1.1=
\]
\[
27.5 \div 1.1=
\]
\end{tabular} \\
\hline \& show th two num any ord and div by anot \& \& on of one in ve) mber \& \& recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers) \& multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000 \& associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. \({ }^{3} / 8\)) (copied from Fractions) \\
\hline Making links If one teddy has two apples, how many apples will three teddies have? Here are 10 lego people If 2 people fit into the train carriage, how many carriages do we need? \& \begin{tabular}{l}
Making \\
Write \\
number \\
describ \\
\hline\(X\) \\
\hline\(X\) \\
\hline What d
\end{tabular} \& \(\times\)
\(\times\)

no \& \[
$$
\begin{aligned}
& \hline x \\
& \hline x
\end{aligned}
$$

\] \& | Making links $4 \times 6=24$ |
| :--- |
| How does this fact help you to solve these calculations? | \& | Making links |
| :--- |
| How can you use factor pairs to solve this calculation? $\begin{aligned} & 13 \times 12 \\ & (13 \times 3 \times 4,13 \times 3 \times 2 \times \\ & 2,13 \times 2 \times 6) \end{aligned}$ | \& | Making links $7 \times 8=56$ |
| :--- |
| How can you use this fact to solve these calculations? $\begin{aligned} & 0.7 \times 0.8= \\ & 5.6 \div 8= \end{aligned}$ | \& | Making links $0.7 \times 8=5.6$ |
| :--- |
| How can you use this fact to solve these calculations? $\begin{aligned} & 0.7 \times 0.08= \\ & 0.56 \div 8= \end{aligned}$ |

\hline
\end{tabular}

| Write the division
 sentences. | $40 \times 6=$
 $20 \times 6=$
 $24 \times 6=$ | |
| :--- | :--- | :--- | :--- | :--- |

WRITTEN CALCULATION					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for twodigit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
				divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
					use written division methods in cases where the answer has up to two decimal places (copied from Fractions (including decimals))
Practical If we put two pencils in	Prove It \dagger Which four number sentences	Prove It What goes in the missing	Prove It What goes in the	Prove It What goes in the missing	Prove I \dagger What goes in the missing box?

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			recognise and use factor pairs and commutativity in mental calculations (repeated)	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	identify common factors, common multiples and prime numbers use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
				know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	
				establish whether a number up to 100 is prime and recall prime numbers up to 19	
				recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm_{3}^{3}) and cubic metres (m^{3}), and extending to other units such as mm and km^{3} (copied from Measures)
Spot the mistake Use a puppet to count but make some deliberate mistakes. $\begin{array}{llll} \text { e.g. } 2 & 4 & 5 & 6 \\ 10 & 9 & 8 & 6 \end{array}$ See if the pupils can spot the deliberate mistake and correct the puppet	True or false? When you count up in tens starting at 5 there will always be 5 units.	True or false? All the numbers in the two times table are even. There are no numbers in the three times table that are also in the two times table.	Always, sometimes, never? Is it always, sometimes or never true that an even number that is divisible by 3 is also divisible by 6 . Is it always, sometimes or never true that the sum of four even numbers is divisible by 4 .	Always, sometimes, never? Is it always, sometimes or never true that multiplying a number always makes it bigger Is it always, sometimes or never true that prime numbers are odd. Is it always, sometimes or never true that when you multiply a whole number by 9 , the sum of its digits is also a multiple of 9	Always, sometimes, never? Is it always, sometimes or never true that dividing a whole number by a half makes the answer twice as big. Is it always, sometimes or never true that when you square an even number, the result is divisible by 4 Is it always, sometimes or never true that multiples of

| | | | Is it always, sometimes or
 never true that a square
 number has an even number 1 more or 1 less than
 of factors. |
| :--- | :--- | :--- | :--- | :--- |
| prime numbers. | | | |

ORDER OF OPERATIONS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
					use their knowledge of the order of operations to carry out calculations involving the four operations
					Which is correct? Which of these number sentences is correct? $\begin{aligned} & 3+6 \times 2=15 \\ & 6 \times 5-7 \times 4=92 \\ & 8 \times 20 \div 4 \times 3=37 \end{aligned}$

| INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS | Year | Year 5 | Year 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |

| solve one-step problems |
| :--- | :--- | :--- |
| involving multiplication and |
| division, by calculating the |
| answer using concrete |
| objects, pictorial |
| representations and arrays |
| with the support of the |
| teacher |\quad| solve problems involving |
| :--- |
| multiplication and division, |
| using materials, arrays, |
| repeated addition, mental |
| methods, and multiplication |
| and division facts, including |
| problems in contexts |\quad| solve problems, including |
| :--- |
| missing number problems, |
| involving multiplication and |
| division, including positive |
| integer scaling problems and |
| correspondence problems in |
| which n objects are |
| connected to m objects |, | |
| :--- |

solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects
solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates
solve problems involving addition, subtraction, multiplication and division
solve problems involving similar shapes where the scale factor is known or can be found
(copied from Ratio and Proportion)

Multiplication and Division: Key Performance Indicators

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Know $2 x, 5 \times$ and $10 \times$ tables, including recognising odd \& even numbers Calculate mathematical statements using x and symbols	Know 3x, 4x and 8x tables	Know tables up to 12×12 Use factor pairs and commutativity in mental calculations Use short multiplication method	Recognise and use square and cube numbers, and know the notation Identify multiples and factors, including finding factor pairs and common factors Use vocabulary: prime numbers, prime factors and composite numbers Know prime numbers up to 19 Multiply and divide numbers by 10,100 or 1000, including decimals Use long multiplication for multiplying numbers of up to 4 digits by one or two digits Divide numbers using standard written short division	Divide numbers using long division, interpreting the remainders as appropriate Use order of operations to carry out calculations

Multiplication and Division: Cross-curricular links

Year 1	Year 2	Year 3 4	Year 5	Year 6	
		Music- Times tables songs	Scaling Problems - linked to DT and recipes		

Multiplication and Division: Vocabulary

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Multiplication Multiply Multiplied by Multiple Division Dividing Grouping Sharing Doubling Halving array	Groups of Times Once/twice... ten times Repeated addition Division Dividing/divide/divided by Divided into Share equally Left/left over One each... ten each Group in pair.... Ten Equal groups of Array Row Column Multiplication table Multiplication fact/ division fact	Multiplication Multiplied by Groups of Product Division Share equally Array Number patterns Multiplication fact/division fact	multiplication multiply multiple factor groups of times product repeated addition division dividing divide left over remainder share equally inverse	Multiple Factor Groups of Product Left/left over Remainder Grouping Sharing Equal groups of Multiplication facts/division facts Inverse Square Squared Cube cubed	multiplication multiple factor product division inverse square squared cube cubed

